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SUMMARY 

Space-time finite element solutions of the convection-dispersion equation using higher-order nodal 
continuity and Hermitian polynomial shape functions are described. Five separate elements ranging 
from a complete linear element with Co.O nodal continuity to a complete first-order Hermitian element 
with C 'J nodal continuity are subjected to detailed analysis. Wave deformation analyses identify the 
source of leading or trailing edge oscillations, trailing edge oscillations being the major source of 
difficulty. These observations are confirmed by numerical experiments which further demonstrate the 
potential of higher-order nodal continuity. The performance of the complete first-order Hermitian 
element is quite satisfactory and measurably superior to the linear element. 
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INTRODUCTION 

Estuarine mass transport is described by a generalized form of the classical unsteady 
convection-dispersion equation and any numerical solution algorithm that maintains an 
Eulerian framework has potential problems with numerical dispersion and solution oscilla- 
tions. It is generally recognized that the numerical difficulties originate with the convective 
term and are particularly severe where there is poor spatial resolution, although there is little 
general agreement regarding the most satisfactory solution algorithm. Numerous algorithms 
have been proposed in the literature and all three appropriate numerical solution 
techniques-the method of characteristics, the finite difference method and the finite element 
method-have been used in a wide variety of forms. This paper describes one such 
alternative, using space-time finite elements and higher-order Hermitian shape functions. 
This approach has received relatively little attention but appears to have some potential in 
the estuarine environment. Five variations on this approach are investigated, in the context 
of wave deformation analyses and numerical experiments, and the overall results give a good 
perspective to the potential of higher-order numerical algorithms for the convection- 
dispersion equation. 

This study was initiated in the context of mass transport in a narrow but well-mixed 
estuarine channel. Estuarine conditions provide a severe test of any solution algorithm. 
Flows may vary from nothing to large values in both directions and concentration gradients 
may vary in a similar manner. A successful solution algorithm must accommodate this range 
of operational conditions. In dimensionless terms with the space step Ax and the time step At 
as the characteristic length and time scales, the numerical solution is dependent on the flow 
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parameter U AtlAx and the dispersion parameter E AtlAx2, where U(x, t )  is the cross- 
sectionally averaged flow velocity including tidal and fresh water components and E the 
longitudinal dispersion coefficient. In a typical estuarine situation the flow parameter might 
range in magnitude up to about three and the dispersion parameter would be small and of 
order 0-1. That the flow parameter frequently exceeds one in magnitude is important as this 
may exclude a number of potential algorithms. A convenient algorithm would also have a 
uniform space and time step, consistent with those appropriate to typical numerical hyd- 
rodynamic models that describe flow in the estuarine channel. A complete water quality 
model of an estuary couples a mass transport stage to a preceding hydrodynamic stage 
through the space and time dependent stream flow. 

Most published finite element algorithms for initial value problems are finite element in 
space only and finite difference in time. Higher-order shape functions in space are often 
associated with the lowest-order finite difference approximation in time, which is broadly 
equivalent to linear shape functions in time. Outright adoption of space-time finite elements 
clarifies the order of approximation involved in the solution algorithm and facilitates the 
introduction of consistent higher-order approximations. 

Space-time finite elements for transient field problems were first proposed by Odenl and 
Zienkiewicz and Parekh.2 Successful applications have subsequently been reported by Bruch 
and Z y v o l ~ s k i ~ , ~  for transient groundwater flow and transient heat conduction, by Grotkop’ 
and by Taylor and Davis6 for long wave propagation, and Gray and Pinder7 for transient 
groundwater flow. Only Taylor and Davis considered convective transport but their study 
was not sufficiently extensive to include any discussion of numerical dispersion and solution 
oscillation difficulties. 

SIMPLIFIED EQUATION FORMULATION 

For a constant cross-sectional geometry, mass concentration of a pollutant in solution is 
described by the simplified estuarine mass transport equation 

where C(x, t )  is the slowly-varying concentration of the dispersive substance, t is time, x is 
the longitudinal co-ordinate along the estuarine channel, R is the linear reaction rate 
coefficient for the particular substance and S is a source or sink for that substance. Equation 
(1) is the classical one-dimensional convection-dispersion equation. In subsequent considera- 
tion of this equation U, E, R and S are all assumed to be constant. 

In the light of the introductory discussion a numerical solution to equation (1) in terms of 
the uniform rectangular space-time finite elements shown in Figure 1 is sought. An 
appropriate integral formulation consistent with equation (1) is achieved through the method 
of weighted residuals.’ The concentration field C(x, t )  within each rectangular element of the 
complete solution domain 0 is represented by the piecewise continuous approximation in 
space and time: 

C(x, t )  + ecx, t )  = “ ] T { C }  (2) 
where [N(x,  t ) ]  is the vector of shape or interpolating or basis functions and { c }  is the vector 
of element nodal parameters. The shape functions must be continuous within and between 
elements and satisfy the essential boundary conditions on equation (1). 

Nodal continuity of the field variable C(x, t )  is represented by the CK1*Kz notation, which 
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at each ( i ,  n)  node for 0 s  k l s K l ,  0 s  k2sK2.  There are a total of K=K,+K2+1 nodal 
parameters at each node, the kth being k = k,+ k2+ 1. For example Co30 continuity implies 
continuity of the field variable alone, whereas C1zl implies continuity of the x and t 
derivatives as well. c(x,  t )  is an approximate solution to equation (1) so that the residual will in general be 
non-zero and must be minimized over the solution domain. The method of weighted 
residuals defines a set of distinct weighting functions W ’ k ( ~ ,  t )  such that the weighted integral 
of the residual over the complete solution domain is zero. The number of separate weighting 
functions is chosen equal to the number of unknown nodal parameters, yielding a closed set 
of equations in the unknown nodal parameters. In the Galerkin method, the weighting 
functions are the shape functions N(x,  t ) .  Equation (1) becomes 

J J [wik($+Re+s ) -- a r ( U e - E z  dxdt-  [ Wik ( U e - E -  ~ ~ ) ] ~ ~ ~ d t = O ,  
n r 

( 3 )  
where I? is the boundary of the solution domain. In the normal manner of assigning the 
weighting functions, the Wik are identically zero at both x = O  and x = J  Ax and the 
boundary integral term in equation (3)  is therefore identically zero. 

Integration over the complete solution domain is equivalent to summation of the integra- 
tion over each separate element, iR,, and the solution domain is extended by At each time 
step. An appropriate recurrence relationship to advance the numerical solution in time is 
established by subtracting the domain integral at time n At from the domain integral at time 
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( n  + 1) At, giving 

JJ [wjk([%] aN ' +R[N]~)-E ( u [ r Y ] ' - E ~ ' ) ] d x d t  * { c } =  -'? JJWjkSdxdt 
i = O  ax ax i =O 

a, 
(4) 

where it is implicit that the solution domain has been restricted to the strip of width At 
between n At  and ( n  + 1) At sketched in Figure 1. This has the form of a matrix equation 
AX = B. If there are K unknown parameters at each (i, n)  node, then the solution vector X 
and the constants vector B have dimensions 1 by (J-l)K and the coefficient matrix A is 
square (and banded) with dimensions ( J -  l )K by ( J -  1)K. The solution vector contains the 
(J- l)K unknown nodal parameters at the new time ( n  + 1) At. 

GENERAL EQUATION FORMULATION 

The complete equation describing mass transport in a one-dimensional estuarine channel is 

Both cross-sectional area A and channel discharge Q, as well as the mass concentration C, 
vary in space and time, but nodal values of A and Q are available from the numerical 
hydrodynamic model stage. Within each rectangular element of the complete solution 
domain, C, A and Q are represented by consistent piecewise continuous approximations in 
space and time: 

C(X, t )  + C(X, t) = [N]'{C} 

A(x, t )  +A(x, t) =[NIT{,} 

(64 

(6b) 

(64 Q(x, t )  + Q(x, t) = [NIT{q) 

where {c} ,  {a}, {q} are vectors of element nodal parameters for concentration, area and 
discharge respectively. 

The weighted residuals formulation follows along the lines outlined above, leading to the 
recurrence relationship 

This has the same matrix form as the simplified equation, except that the coefficient matrix A 
is no longer constant but depends on the {a} and {q}  vectors supplied by a hydrodynamic 
model. The separate summations of element integrals in equation (7) are invariant, however, 
for constant R and E. 

Formulation of the numerical solution is completed or closed by the specification of 
appropriate initial and boundary conditions on the dependent variable C(x, t). The initial 
conditions describe the solution line at time zero and are represented through the nodal 
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parameters {c}: for i = 0, I, 2, . . . , J- 1, J. These must be specified or assumed to initiate a 
simulation. The boundary conditions describe the time history of the environment from 
which the solution domain is extracted, or more specifically the solution lines at both ends of 
the particular estuarine reach for all simulation time. These are represented through the 
nodal parameters {c}: and {c}; for n = I, 2, .  . . , which must be specified at each new time 
level. A detailed discussion of boundary conditions is given by Sobey and Vidler’ in the 
context of the method of characteristics. 

DOUBLE ELEMENT ASSEMBLAGE 

The assemblage of matrix equations (4) or (7) requires completion of the element double 
integrations and associated summations. Anticipating that the weight functions as well as the 
shape functions are unity at the relevant node and vary in some manner to zero at 
immediately adjacent nodes, beyond which they remain zero, it is clear that non-zero entries 
for each distinct weighting function WJk are restricted to the six nodes of the double element 

centred at j Ax, as shown in Figure 2. If there are K nodal parameters e.g. C, - , - , . . . 
at each node, the subscript k denotes the kth of these. ( aC ax dC at 1 

It is convenient to adopt a double element node numbering system, from 1 to 6 for each 
double element as shown also in Figure 2. For each double element (or each j = 1,2, . . ., J- 
1) and each nodal parameter (or each k = 1,2,. . . , K ) ,  equations (4) and (7) yield a linear 
algebraic equation in all the nodal parameters of the double element, of the form 

(8)  A$:c&+ A;:c’,~ + A ~ C ’ , ~  = wk 
where B J k  = -A~:c:~-A~:c:~-A~~c:~. Tensor summation notation is assumed with 1 = 
1,2, .  . . , K.  Equation (8) is the general representation of a single row of the matrix 
equations (4) and (7). The source/sink term has been excluded from the right-hand side of 
equation (8) and it will not be further considered here. 

The resulting coefficient matrix is generally asymmetric but banded. For conservative 
pollutants it has a constant bandwidth of 3K and for K = 1 the matrix equation might be 
solved by the Thomas or tri-diagonal algorithm. A variable bandwidth solution algorithm, 
however, is more appropriate for the complete problem. A suitable subprogram is UACTCL 
(written by R. L. Taylor and described in Reference 8) or LEQTlB from the IMSL package. 

Double element node 
number ( p  o r  q )  

\ 

j- 1 jAx j+ 1 

Figure 2. Double element at j Ax 
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I 

The coefficients A$ in equation (8) are determined directly from the element double 
integrations and subsequent summations. The integrations are completed one component at 
a time. Each element double integral is first transformed from the global x, t co-ordinate 
system to the local or natural r, s co-ordinate system and integrations are then completed 
numerically. Each separate integral in equation (4) has the general form 

where 

and 
u, u = local node number = 1,2,3,4 

k, 1 = number of nodal parameter = 1,2, . . . , K. 

K ,  for example, is one when the nodal parameters are restricted to 
Transforming to the local co-ordinate system and multiplying through 
defines the dimensionless element integral 

concentration alone. 
by the constant 2IAx 

&(r, s)-2-- AtaNul(r, s)]] dr ds (9) 
UAt 

ar Ax2 ar 

Each such definite integral is evaluated numerically by Gaussian quadrature.' Shape and 
weighting functions are mostly polynomials and the order of Gauss quadrature can be chosen 
to achieve exact integration in such cases. 

The coefficients A$ are finally established by completing the appropriate element summa- 
tions in equation (4). These summations have been summarized in the form of a double 
element assemblage table, Table I, in which the coefficients are determined by summing the 
separate columns. For example, 

Only the subscripts of I have been listed in the table. Determination of the coefficients A$ 
for the general equation (7) follows the same pattern as above. The discharge Q and the 

Table I. Double element assemblage for simplified equation 
I 

Lmal nodes- 
R.H. element 
L.H. element 

11 41 21 31 
11 41 21 31 

Double element nodes, p 

Weighting function 
2k 
3k 
l k  
4 k  

11 21 31 41 51 61 

2k, 11 2k, 41 2k, 21 2k, 31 
3k, 11 3k, 41 3k, 21 3k, 31 

l k , 1 1  l k , 4 1  l k , 2 1  l k , 3 1  
4k, 11 4k, 41 4k, 21 4k, 3E 
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cross-sectional area A vary with position and time, in a manner described by nodal vectors 
{q) and { a )  respectively. Two, rather than one, separate element integrations need to be 
completed. Details can be found in Sobey and Vidler.' 

HIGHER-ORDER SHAPE FUNCTIONS 

Subsequent consideration of space-time finite elements will be restricted to the simplified 
equation (1) or more precisely the associated weighted residuals statement, equation (4). The 
essential character of the physical problem and the associated numerical difficulties are both 
retained and the simplified equation is an appropriate framework for further evaluation. 

Linear shape functions (see Figure 3(a)) with Co3O nodal continuity and Galerkin weighting 
functions lead to discrete equations that are identical with those derived by the finite 
difference method using lowest-order centred finite difference approximations." The result 
would be questioned of course if this were not the case, as it is the same physical problem to 
the same order of approximation. It is immediately apparent, from the finite difference 
experience, that the finite element formulation of itself will not alleviate the numerical 
dispersion difficulties. Additional information, specifically a more complete local description 
of ;he continuous field variable, implies the local partial derivatives to-an appropriate order, 

namely - , - and - - - etc., as well as the local field value of C. 
ac ac a2c a2c a2c 
ax at ax2 ' ax at ' at2 

It is axiomatic that higher-order numerical algorithms will involve higher-order derivatives 
than those in the partial differential equation. If linear elements are retained, discrete 
approximations to these higher derivatives must be based on rather distant grid or nodal 
points, nodal points that may well be beyond the domain of physical influence and too 
distant to have any physical influence on the local field variable. This is not the kind of 
additional information sought and it follows that nodal values of concentration alone (i.e. 
Co9O nodal continuity in E M  terminology) are an insufficient description of the local field 

1 Dependent varlable 

2 Flrst  derlvatlve 

3 Second derlvatlve 0 

( a )  Zero th  o rde r  ( b )  F l r s t  o rde r  ( c )  Second orde r  

Figure 3. Hennitian shape functions 
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variable. The additional information sought must be local, within and not beyond the domain 
of physical influence. It is required within each element. Higher-order space-time finite 
elements fulfil this prescription almost exactly. In the present context the finite element 
method has the additional merit of providing a convenient framework for numerical 
experiment. It is precisely the above motivation that led Fischer" and Holly and Preiss- 
man" to introduce higher-order interpolation in an explicit method of characteristics 
algorithm. Their results are very encouraging. 

Within the framework of rectangular space-time finite elements, higher-order approxima- 
tions develop naturally along three different lines. The 'serendipity' and Lagrange families 
maintain CO*O nodal continuity and establish higher-order representation by systematically 
increasing the number of boundary nodes (serendipity family) and boundary and internal 
nodes (Lagrange family). The quadratic and cubic serendipity elements are quite common in 
the FEM literature. For the Hermitian family, higher-order approximations develop from 
higher-order nodal continuity CK1*q associated with piecewise Hermite interpolation for the 
partitioned interval. In all three families, the lowest-order member is the linear element in 
Figure 3(a). 

The present study concentrates attention on the Hermitian family, a choice based 
intuitively on the explicit higher-order continuity at the corner nodes of the basic rectangular 
element. Equivalent serendipity or Lagrange elements may perform equally well (or bad) but 
this was not considered. The finite element experience is based predominantly on equilib- 
rium or boundary value problems in structural engineering, where quadratic and cubic 
serendipity elements have found considerable acceptance. Hermitian shape functions have 
been used successfully by Bogner et ~ 1 . ' ~  for plate bending and Cavendish et aE.14 for 
steady-state petroleum reservoir flow, but have found little general acceptance for such 
problems. Estuarine mass transport is a propagation or initial value problem and the 
structural engineering experience is of course not necessarily applicable. It is appropriate, 
however, to observe that the computational effort is related directly to the number of 
unknown nodal parameters and those nodal parameters at time n At are not unknown. The 
degrees of freedom of the element on the other hand is a measure of the order of 
approximation of the solution over the element. Considering the second member of each 
family, the quadratic serendipity element has five unknown nodal parameters in eight 
degrees of freedom and the quadratic Lagrange element has one additional unknown at six 
and one additional degree of freedom at nine. The Lagrange element thus combines a 
slightly higher order of approximation with an equivalent increase in computational effort, in 
accord with an intuitive appreciation of both elements. By comparison, the first-order 
Hermitian element has significantly higher degrees of freedom at twelve for much the same 
computational effort as the Lagrange element, both having six unknown nodal parameters. 
Again this matches the intuitive appreciation of the Hermitian element that led to its 
preference in the present study. 

Hermitian and hybrid -Hermitian elements 

The Hermite interpolation polynomials to first and second order are sketched in Figures 
3(b) and 3(c) respectively. The resulting shape functions for each nodal parameter over a 
single rectangular element in the local co-ordinate system are listed in Sobey and Vidler.' 
Consistent dimensions can be maintained among the nodal parameters by non- 
dimensionalizing the derivatives in terms of Ax12 as the length scale and At12 as the time 
scale. 
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The Kth order Hermite interpolation polynomials H:(q) are the (2K + 1)th-order polyno- 
mials in the partitioned interval q = -1 to q = +1 in which 

l f o r  k=l ,E=O,l ,  ..., K a n d f o r q = - 1  
Ofor k f l  a n d f o r q = + l  

and 
1 for k=l ,E=O,l , .  . . , K  and for q = + l  
Ofor k f l  andforq=--l  

where Dk = dk/dqk. Shape functions defined accordingly enforce nodal continuity to the Kth 
derivative in the field variable and the additional independent nodal parameters. The 
magnitude of the functions as sketched in Figure 3(b) gives in addition a rough measure of 
the magnitude of the higher-order correction to the local value of the field variable by the 
inclusion of slope as an independent nodal parameter. The sketches in Figure 3(c) tell the 
same story, indicating the further and smaller correction by the inclusion of the rate of 
change of slope as an additional nodal parameter. These sketches anticipate a significant 
reduction in numerical solution error on the introduction of the first-order Hermitian 
polynomials and a diminishing return from second and higher-order Hermitian polynomials. 

A total of four higher-order elements (Elements 2 to 5 of Table 11) were defined for 
further analysis, but only one of these, Element 5, is a complete Hermitian space-time 
element, the other four being hybrid-Hermitian. The choice of an appropriate element must 
be based on a compromise between precision and computational effort, the introduction of 
higher-order elements rapidly increasing the computational effort. For example, the number 
of unknown nodal parameters increases from one to three to six for zeroth (or linear), first 
and second-order complete Hermitian elements. The computational effort increases roughly 
as the cube, from one to 27 to 216 times over, and it is desirable to minimize this 
computational effort, where this is consistent with adequate precision. The hybrid-Hermitian 
Elements 2 and 4 were chosen with these computational consequences in mind. 

Table I1 lists five space-time finite elements that have been subjected to detailed 
evaluation. In all five cases the weighting functions are the shape functions in the Galerkin 
manner. All five space-time finite elements have been subjected to extensive evaluation and 
numerical testing over parameter ranges for both the flow parameter U A t l A x  and the 
dispersion parameter E At/Ax2 that are appropriate for estuarine flows. 

Table 11. Space-time finite elements investigated 

Element Nodal Nodal Shape functions 
number continuity parameters X t 

C Linear Linear 1 C0.0 

2 
ac Ax 

C,-- 
ax 2 

C'." First-order 
Hermitian Linear 

a~ a2c ~~2 Second-order 
C - -  -- Hermitian Linear 3 C 2 , O  

'ax 2 ' ax2  4 
First-order 
Hermitian Linear 

aCAx aCAt First-order First-order 
Hermitian Hermitian 

C1.I C - -  -- 
'ax 2 ' a t  2 

5 



286 R. J. SOBEY 

WAVE DEFORMATION ANALYSES 

The wave deformation analysis of Leendertse" provides an objective evaluation of linear 
numerical solution algorithms for propagation or initial value problems. In a framework of 
Fourier Series representations for the physical and the numerical solutions, a measure of the 
precision of the numerical solution over the complete spectrum of spatial wave numbers is 
established. The physical solution is the solution to the partial differential equation (1). This 
solution may be represented as the real part of the Fourier series expansion 

where pm( = 2r/Tm, Tm being the wave period) is the angular wave frequency and 
am(=2r /Lm,Lm being the wave length) the spatial wave number of the mth Fourier 
component. Equation (1) is linear so that only one component of equation (12) need be 
considered at a time. Substitution of a single Fourier component, C" exp [i(& + ax)], into 
equation (1) establishes the dispersion relationship for the physical wave 

p = -aU+ i[a2E + R] (134 
or 

p At  = (a Ax) vai+i[(a  AX)^ "L\t+ R At] 
Ax A X  

Partial derivatives of 
equation (12), whence 

the physical solution are established by direct differentiation of 

and 

The numerical solution is the solution to the discrete finite element equation (8) 

A ' l l c l l  +A,klC21+A3klC31 ~ A ~ l C 4 1 ~ A ~ l C 5 1 ~ A 6 k l C 6 1  = O  (15) 
where tensor summation notation with 1 = 1,2 , .  . . , K is assumed. There are K such 
simultaneous linear algebraic equations, k = 1,2, .  . . , K. While the spirit of the following 
analyses remains unaltered, the details depend on the number and nature of the nodal 
parameters. The specific details for Elements 1 and 5 are given below, the remaining 
elements following exactly the same pattern. The coefficients A:, are available from the 
double element assemblage described above. 

Element 1 has CO-O nodal continuity, K is one and cpl is C,, the nodal concentration. 
Equation (15) becomes 

A,C1+A2C2+A3C3+A4C4+A5C5+A6C,=O (16) 
The numerical solution also is represented as the real part of a Fourier Series expansion 
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along the lines of equation (12) but allowing the angular wave frequencies PI, to differ from 
p, for the physical solution. Equation (16) is also linear so that only one component of 
equation (17) need be considered at a time. Substitution of a single Fourier component, 
C* exp [i(P't + crx)], into equation (16) results in 

Ale-1uA" + A3 + AselUAx 
A2e-IuAX +As + A6elaAX (18) efif3'At = 

This is the equivalent dispersion relationship for the numerical or computed wave for 
Element 1. 

Element 5, on the other hand, has C1*' nodal continuity, K is three and the nodal 
parameters are 

c p 1 =  c, 
ac, AX 

cp2=-- 
ax 2 

and 
ac, At 

cp3=-- 
a t  2 

Each of these parameters is independent and is independently propagated by the solution 
algorithm. Each is represented by separate Fourier Series expansions. The discrete finite 
element equation (15) remains linear so that only a single wave number need be considered 
at a time. The separate Fourier components are: 

(204 c, = C*ei(f3;t+ux) 

The independence of these nodal parameters is represented through separate angular wave 
frequencies p i ,  and p; respectively. 

Substituting equations (20) into equation (15) gives 

G k  for k = 1 , 2 , 3  (21) gkeiR;At + ~ k ~ i P ; A t  +Fkeip ;At  = 

where Dk, Ek ,  Fk and G k  are complex and functions of p At, (T A x  and the coefficients A$. 
They are listed in Sobey and Vidler.' Equations (21) represent three simultaneous equations 
in the complex exponentials exp (ip; At), exp ($5 At) and exp (ip; At) and in which all the 
constants are also complex. By treating the exponentials as the unknowns and separating 
them and the constants Dk, Ek ,  Fk and G k  into real and imaginary parts, equations (21) 
were reduced to a set of six linear algebraic equations with real coefficients in the real and 
imaginary parts of the exponentials. This set of equations was solved by matrix inversion. 

A complex propagation factor, following Leendertse, is defined as the ratio T of the 
computed solution to the physical solution after the solution has propagated a certain 
distance and time. Leendertse's choice of time was 27dp for long wave propagation but p is 
complex (see equation (13)) for the convection-dispersion equation and time must be real. 
The present problem is convection dominated and an appropriate choice of time scale is 
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Similar propagation factors can be defined for higher-order modes where they exist but 
major interest centres on the primary mode. Where T equals one, the solutions of the finite 
element equation and the partial differential equation correspond. The proximity of T to 
unity is an established and convenient measure of the precision of a numerical algorithm. 

The propagation factor thus defined depends on four dimensionless parameters, the flow 
parameter U AtlAx, the dispersion parameter E AtlAx2, the decay parameter R At and the 
dimensionless wave number (+ Ax = 2~r/(L/Ac\x). For a particular problem, the flow, dispersion 
and decay parameters are constant and the complete spectrum of behaviour is established by 
varying the dimensionless wave number u Ax, or more commonly the dimensionless wave 
length LlAx, over the full range. The dimensionless wave number or wave length is a 
measure of the steepness of the concentration gradient. A small value of LlAx implies a 

L / b x  

2 5 10 20 50 

Parameter o f  curves 
i s  UAt/Ax 
EAt/Ax' = 0.01 
C0." nodal continuity 

2 5 I0 20 50 

L/Ax 

Figure 4. Wave deformation for Element 1 
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steep gradient and this is where problems are anticipated. The flow and dispersion parame- 
ters were grouped in a systematic manner to establish the complete behaviour pattern. 
Equivalent Peclet Numbers (U A x l E )  range from 0.5 (U AtlAx = 0.05, E At/Ax2 = 0.1) to 
1500 ( U  AtlAx = 1.5, E Atlhx' = 0.001) but it is more appropriate to accord separate 
significance to the flow and dispersion parameters as they relate to separate terms of 
equation (1). 

A selection of the wave deformation results are presented as Figures 4 to 8 for Elements 1 
to 5 respectively. The dispersion parameter is constant at 0.01 for these figures and the 
parameter identifying each set of curves is the flow parameter. More complete details can be 
found in Sobey and Vidler.g Both the modulus, \TI, and the phase, arg 7; are plotted 
separately as functions of U A x .  In physical terms, IT\ in excess of one implies relative 
amplification of the computed solution at that wave number, whereas decay is implied for IT/ 
less than one. A phase lag (arg T negative) implies the particular wave number component is 
propagated by the numerical solution at a slower speed than the physical solution, a phase 
lead implying a faster speed. Numerical dispersion and solution oscillations stem from 
inadequate representation of the higher wave number components of a spatial distribution of 

L/Ax 

2 5 10 20 50 

0 
N ~! p a r a m e t e r  of c u r v e s  

IS UA.t/Ax 
EAt/Ax* = 0.01 
C'." nodol c o n t i n u i t y  

2 5 10 20 50 

L/Ax 

Figure 5. Wave deformation for Element 2 
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concentration. It follows that major interest centres on the behaviour of the propagation 
factor for small L/Ax. 

Figure 4 for Element 1, the linear element, gives a ready explanation for its poor 
performance. There are consistently large amplification and particularly phase errors for the 
higher wave numbers over the whole range of flow and dispersion parameters. Increasing 
values of the dispersion parameter progressively reduce the amplitude errors but significant, 
mostly lagging phase errors remain. Leading phase errors were also observed for small flow 
parameter and large dispersion parameter (i.e. small Peclet Number). 

Element 2 is the first of the hybrid-Hermitian elements, the C'70 nodal continuity being a 
recognition of the predominance of spatial derivatives in the transient convection-dispersion 
equation. A sample of the wave deformation characteristics is presented in Figure 5 and is 
quite encouraging, especially for the lower values of the flow parameter. There is a vast 
improvement over the Element 1 performance. Amplitude deformation is approaching 
reasonably tolerable levels over the complete wave number spectrum for all flow parameters 
considered. There are significant improvements also in the phase characteristics, but only for 
small flow parameters. There were both lagging and leading phase errors at small L/Ax for 
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small flow parameters, depending on the dispersion parameter, but lagging errors only for 
flow parameters of at least 0.5 and above, where the dispersion parameter becomes 
increasingly unimportant and the phase errors increase in magnitude. The phase errors are 
unacceptable for flow parameters above about 0.75. 

The increasing unacceptability of Element 2 as the flow parameter increases can be related 
to the characteristic directions. Ignoring dispersion and decay and referring to Figure 9, the 
solution for Crtl is equivalent to interpolation among the nodal parameters to determine the 
concentration at point p. For smaller flow parameters, p is located between ( i  - 1, n)  and 
(i, n)  in the x-direction and separate estimates of nodal values of spatial gradient will lead to 
higher-order interpolation. As the flow parameter increases beyond one, the point p is 
located between nodes (i - 1, n )  and (i - 1, n + 1) in the t-direction and nodal values of 
spatial gradient will have little impact on the interpolation for p. The results from Elements 
3 ,  4 and 5 will in turn also be related to Figure 9. 

Element 3 has C2*0 nodal continuity, having both the first and second spatial gradients as 
separate nodal parameters. A sample of the wave deformation results is presented as Figure 
6. As would be anticipated from Figure 9, there is some improvement in both the modulus 

L/Ax 

2 5 10 20 50 

0 1_ N 

Paramete r  o f  curves 
is UAt/Ax 
EAt /AxZ = 0.01 
C0. '  nodal con t inu i t y  

0 

N 

2 5 10 20 50 

L/Ax 

Figure 7. Wave deformation for Element 4 



292 R. J. SOBEY 

and phase curves for small flow parameters but for large flow parameters the results are 
almost indistinguishable from those for Element 2. Phase errors for Element 2 at small flow 
parameters were a combination of leading and lagging errors, depending on the dispersion 
parameter, but only leading phase errors are predicted for Element 3, regardless of the 
dispersion parameter. Amplitude errors follow a similar pattern at small flow parameters, a 
moderate amplification at most for Element 2 and a moderate decay for Element 3. 

Element 4 has C0*l nodal continuity, with the time derivative as the second nodal 
parameter. A sample of the wave deformation results is presented as Figure 7. Compared to 
Element 2, the results are generally quite disappointing. There is a definite improvement on 
Element 1 but the element must still be rejected. The errors certainly decrease as the flow 
parameter increases, as anticipated from the characteristic directions in Figure 9, but the 
lagging phase errors remain unacceptable. This asymmetry in the x and t behaviour was 
anticipated, however, from the nature of the terms in the convection-dispersion equation 
and the knowledge that problems centred on the convective term. 

Element 5 has C1,' nodal continuity, including both the time and space derivatives as 
separate nodal parameters. This is the complete first-order Hermitian space-time element 
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Figure 9. Characteristic directions for different flow parameters 

and a sample of the wave deformation characteristics is presented in Figure 8. The phase 
results are reasonably satisfactory over the complete range of flow parameters, the dispersion 
parameter having little overall influence. For low flow parameters the behaviour is margi- 
nally better than Element 2 (C',' continuity) and marginally inferior to Element 3 (C2*' 
continuity). For moderate to large flow parameters, Element 5 is measurably superior. The 
influence of the flow parameter on the phase errors is quite pronounced, with predominantly 
lagging phase errors at small flow parameters varying to predominantly leading phase errors 
for larger flow parameters. The overall behaviour is in accord with the characteristic 
directions in Figure 9, the higher order respresentations in space and time being consistent 
with higher-order interpolation for the point p at flow parameters less than and greater than 
one. 

It would appear from the wave deformation results that a complete Hermitian, rather than 
a hybrid-Hermitian, space-time element is essential to achieve a reasonable numerical 
solution to the convection-dispersion equation over the complete range of flow parameters. 
The question of what order, however, remains. Element 5 is a complete first-order Hermi- 
tian element. The next step is a complete second-order Hermitian element. This element has 
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ac ac-a2c a2c a2c 
ax ' at ' ax2 ' ax at ' at2 

six nodal parameters-C; - - . - - 

Element 5.  The number of unknowns are doubled and the computational effort would 
increase by a factor of eight, almost an order of magnitude. There is of course a measure of 
diminishing returns from increasingly higher-order approximations. A comparision of Ele- 
ment 1 (Co7' nodal continuity), Element 2 (C17') and Element 3 (C",') gives a rough measure 
of the return that might be expected. The phase error becomes increasingly smaller with each 
increase in order but the improvement in precision is somewhat less than an order of 
magnitude for each order. 

NUMERICAL EXPERIMENTS 

The final evaluation of the selected space-time elements was a set of numerical experiments 
comparing the performance of the separate elements with an analytical solution to equation 
(1). Decay and sourcelsink terms were neglected in these tests and the context is the 
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convection and dispersion of an instantaneous point source of mass M at time zero. The 
analytical solution is 

M ( x  - Ut)2 -4- 4Et 1 C ( x ,  t )  = 
PAJ(471.Et) 

where p is the mass density of the water and A the constant cross-section of the channel. 
Equation (23) describes a Gaussian distribution whose centre of mass convects at speed U, 
whose peak concentration decays as (Et)$ and whose half width increases as (Et)f.  

The initial conditions for the numerical experiments cannot be set at time zero as an 
instantaneous point source cannot be resolved by a computational grid. The initial conditions 
have been defined at time to when the half width of the distribution has grown to S Ax, 
where S is a dimensionless constant and a measure of the steepness of the initial profile. The 
peak concentration at this time has been set at 1.0. The half width of the distribution is the 
distance b such that 

C( Ut f b, t )  = $C( Ut, t )  (244 

i.e. the distance from the peak concentration to the points where the concentration has fallen 
to half the peak value. From Equation (23) 

4Et 
In 2 

b2=- 

The half width is a more identifiable dispersion length scale than the standard deviation 
(4Et)i, which appears naturally in equation (23). 

It is unrealistic to expect a numerical algorithm to perform beyond the resolution 
capabilities of the finite grid and associated shape functions. The problem is analogous to 
aliasing in frequency spectral analysis, where frequencies above the Nyquist or folding 
frequencyt6 

oN = 271.12 At (25) 

cannot be resolved from a time series with a uniform time step of At. Information at 
frequencies above this Nyquist frequency is folded back to frequencies below the Nyquist 
frequency. Aliasing in a spatial series sense is encountered here and wave numbers in excess 
of the Nyquist wave number 

CTN = 2T/2 AX (26) 

are folded back to smaller wave numbers less than cr,. In terms of wave length, the Nyquist 
wave length would be LN = 2 A x  and wave lengths below LN cannot be resolved. Equation 
(26) is strictly applicable to Coso nodal continuity. Higher-order nodal continuity will extend 
the spatial resolution to shorter wave lengths than 2 A x  but a finite Nyquist wave number 
will nonetheless exist, dependent solely on the space step and the order of nodal continuity. 

In the sense that 2b is a measure of the wave length, an initial S of order one would 
provide an appropriate test of the separate elements. An S value of 0.5 was adopted for the 
following tests. These initial distributions are dominated by the shorter wave lengths and 
provide quite demanding tests of operational performance. In addition the Gaussian hump 
distribution will discern both leading and lagging phase errors at the upstream and down- 
stream edges respectively. A common alternative numerical test bed for the convection- 
dispersion equation is the propagation of a continuous point source, in effect the convection 
and dispersion of a concentration front. However, this distribution has a leading edge only 
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and is not quite as demanding or revealing as the steep Gaussian hump, which has both a 
leading and trailing edge. 

A wide range of numerical experiments is reported in Sobey and Vidler’ and a representa- 
tive sample is included here as Figure 10, showing four of the five elements at a flow 
parameter of 0.5 and a dispersion parameter of 0.01. The analytical and numerical solutions 
are compared after 20 and 40 time steps respectively. Element 3 has been omitted because 
of its close performance characteristics to Element 2. The grid resolution of the initial 
conditions does not allow an exact match with the Gaussian curve, but this is unavoidable 
and must be borne in mind when evaluating the results. As anticipated, the numerical 
experiment results are in complete agreement with the wave deformation curves. The 
numerical experiments do serve, however, to put the wave deformation analyses in reasona- 
ble perspective, giving some physical reality to amplitude errors and particularly leading and 
lagging phase errors. 

Element 1 shows a consistent pattern of substantial trailing edge solution oscillations 
coupled with peak amplitude decay and phase lag, a skewed profile being observed over the 
complete flow parameter range. The equivalent wave deformation, Figure 4, showed a 
persistent phase lag that is entirely consistent with the trailing edge oscillations. The 
numerical dispersion is a consequence of the re-distribution of mass to the trailing edge 
oscillations. The Element 2 results, Figure 10(b), were quite impressive at very low flow 
parameters’ but rapidly degenerated to common skewed profiles with trailing edge oscilla- 
tions at moderate to high flow parameters. Again these results are as anticipated from the 
wave deformation analyses where the phase characteristics are favourable only at small flow 
parameters. In plotting the results for Element 2, no advantage was taken of the available 
nodal estimates for the spatial gradients and linear interpolation between nodal field values 
was assumed. If the spatial gradients had been used in the interpolation, the results would 
appear more satisfactory, particularly around the peak. 

The Element 4 response in Figure 1O(c) was again as anticipated. The wave deformation 
characteristics are never really acceptable but become increasingly better at higher flow 
parameters. Exactly the same trend is observed with the Gaussian hump experiments. Once 
again the Element 5 response, in Figure 10(d), was as anticipated. The wave deformation 
analyses are quite reasonable across the complete flow parameter range and this is clearly 
reflected in the Gaussian hump experiments. As with Element 2, no advantage was taken of 
the spatial gradients in plotting the numerical results. Solutions oscillations of course remain, 
as the wave deformation characteristics are not perfect, but the magnitude of the errors is 
approaching tolerable limits. A complete second-order Hermitian element would further 
reduce such problems but at the expense of significantly increased computational effort. 

CONCLUSIONS 

A detailed evaluation of the potential of space-time finite elements in numerical solutions of 
the convection-dispersion equation has highlighted the difficulties that persist where an 
Eulerian framework is maintained. As a general comment, the value of wave deformation 
analyses is clearly identified. Lagging phase errors lead to trailing edge oscillations and an 
upstream skewing of the concentrating distribution. Leading phase errors have the reverse 
effect, leading edge oscillations and a downstream skewing of the distribution. Higher-order 
elements generally lead to reasonably satisfactory amplitude performance and the phase 
errors have been identified as the critical aspect of wave deformation in this context. More 
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specifically the numerical solution difficulties have been clearly related to the wave deforma- 
tion characteristics at the lowest wave lengths. It is unrealistic, however, to expect a 
performance that is beyond the resolution capabilities of the grid. Wave numbers above the 
Nyquist wave number cannot be resolved at Co30 nodal continuity. HIgher-order nodal 
continuity enhances spatial resolution but the concept of a Nyquist wave number remains. 

The separate dependence of any numerical solution algorithm on three dimensionless 
groups, respectively the flow, dispersion and decay parameters, is also identified. The flow 
parameter dominates the numerical solution performance. The dispersion parameter has a 
quite secondary importance, while it remains small, and the decay parameter has no 
noticeable effects in the range considered. From the five elements considered, it would seem 
that the complete first-order Hermitian space-time element is a reasonable compromise 
between adequate precision and acceptable computational effort, but only where there is 
appropriate resolution of the shorter wave lengths. 
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